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1. Short introduction on disparate scale interaction

In this lecture, we will introduce one generic class of nonlinear precesses called
disparate scale interaction. Plasma turbulence itself has several explicit distinct
characteristic length scales. For instance, ion gyroradius ρi and electron gyroradius
ρe in magnetized plasmas. The Debye length for collective oscillation, and skin
depth for magnetic perturbation.

One reason for the disparate scales is that me � mi, thus plasmas have different
fluctuation properties, e.g. plasma waves vs. ion-acoustic waves.

Nonlinear dynamics: unstable modes couple stable modes with common scale
length. For example, drift waves are unstable when k‖ � kθ, then nonlinear inter-
action within like-scale will increase k‖, allowing energy transfer to strongly damped
modes.

Disparate scale interaction is in contrast to Kolmogorov cascade in neutral fluids.
In cascade, the kinetic energy is transferred from large scale L to micro-scale ld
where the kinetic energy dissipated. And there is no preferred scale between L and
ld.

High ω high k fluctuation (small) → low ω low k structure (large) by effective
stress, and couple energy to large scale; Low ω low k structure (large) → high ω
high k fluctuation (small) by refraction or strain field, as shown in Fig. 1.1

Disparate scale interaction is a typical process for the generation of large scale
structure [Diamond et al. PPCF 2005]. Formation of large scale by turbulence is
similar to ’inverse cascade’ in fluid dynamics. But in disparate scale interaction,
the energy transfer directly to long-wavelength structure from small scales, while

Figure 1.1. Interaction between small-scale fluctuations and
large-scale ones.
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in ’inverse cascade’ case, the transfer occurs through a sequence of intermediate
scales.

The disparate scale interactions has many examples. The simplest one is the
interaction between Langmuir turbulence (plasma waves or plasmons) and ion-
acoustic waves (phonons). In this case, the plasma waves form ponderomotive
pressure field to ion-acoustic waves, and the density perturbation of ion-acoustic
waves refracts plasma waves, so that the modulation of plasma waves grows.

The second example is the drift wave-zonal flow interaction in toroidal plasmas.
In this case, small scale drift wave turbulence induces transport of momentum
(Reynolds stress or vorticity flux), which amplifies the zonal flow shear. On the
other hand, zonal flow shears stretch and tilt the drift wave packet. The coupling
leads to an energy transfer from drift wave turbulence to zonal flows, which is an
important nonlinear process for confinement of toroidal magnetized plasmas.

In the following contents, we will discuss these two examples.

2. Wave kinetic theory for Langmuir turbulence

In general situations, plasma waves are excited as Langmuir turbulence, and the
ion-acoustic waves may also be a broad-band spectrum. The evolution of enve-
lope of Langmuir turbulence then may be comparable to the ion-acoustic speed.
The coupling between Langmuir turbulence and ion-acoustic waves is studied using
quasi-particle approach here.

The Langmuir turbulence field is characterized by action density N(k,x,t), i.e
population density of waves.

N =
Ek
ωk
, Ek =

∂

∂ω
(ωε)|ωk

∣∣∣Ẽk∣∣∣2
8π

where Ek is energy density, Ẽk is the electric field of plasma wave at wave number
k.

The ion-acoustic waves are described by the density and velocity perturbations
ñ and Ṽ, both of which vary slowly compared to k and ωk of Langmuir turbulence.

Under the condition of scale separation, the N(k,x,t) is conserved along the
trajectory. The wave kinetics equation for Langmuir turbulence under the influence
of ion-acoustic waves is written as,

(2.1)
dN

dt
=
∂N

∂t
+ (vg + Ṽ) · ∂N

∂x
− ∂

∂x
(ωk + k · Ṽ) · ∂N

∂t
= 0

the trajectories determined by eikonal equations,

dx

dt
=
∂ωk
∂x

+ Ṽ,
dk

dt
= − ∂

∂x
(ωk + k · Ṽ)

In the presence of long-scale perturbations, wave frequency is modified,

ωk = ωk0 + ω̃k

ωk0 is given in the absence of acoustic waves, and the unperturbed orbit of quasi-
particles is then,

dx0

dt
=
∂ωk0

∂x
= vg,

dk0

dt
= −∂ωk0

∂x
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2.1. Evolution of the Langmuir wave action density. Set the action density
of plasmons N = 〈N〉 + Ñ . We analyze the case that the Langmuir turbulence is
homogeneous in unperturbed state, and the Doppler shift is smaller than effects of
modulation of refraction, then the dispersion relation for plasma waves is

ω2 = ω2
p0(1 +

ñ

n0
)

2.1.1. Evolution of Langmuir wave energy density. In interacting with acoustic
waves, the action density N is conserved, then the change of energy density of
plasma waves is

d

dt
Ek =

d

dt
(ωkN) = N

d

dt
ωk

Noting the relations,
d

dt
ωk =

∂ωk
∂k
· dk
dt

= vg · (−
∂ωk
∂x

) = −vg ·
∂

∂x
(
ωp0
2

ñ

n0
)

where we use
dk

dt
= −∂ωk

∂x
= −ωp0

2n0

∂ñ

∂x

then one has,
dEk
dt

= −Nωp0
2n0

vg ·
∂ñ

∂x

Putting N = 〈N〉+ Ñ into this relation, and 1st order terms vanishes in long time
average, 2nd order terms survive,

d

dt
〈Ek〉 = −ωp0

2n0
vg · 〈Ñ

∂ñ

∂x
〉

This relation indicates that the change of plasma waves energy density, which is
transferred to ion-acoustic waves, is given by the correlation 〈Ñ ∂ñ

∂x 〉.

2.1.2. Wave kinetic equation of Langmuir action density. Putting N = 〈N〉 + Ñ

into equation 2.1, yields the response of 〈N〉 and Ñ to ion-acoustic waves,

(2.2)
∂Ñ

∂t
+ vg ·

∂Ñ

∂x
− ∂ωk0

∂x
· ∂Ñ
∂k

=
∂ω̃k
∂x
· ∂〈N〉
∂k

∂〈N〉
∂t

=
∂

∂k
· 〈∂ω̃k
∂x

Ñ〉

Here we neglect the Ṽ and k · Ṽ, since the Doppler shift by the ion fluid motion is
smaller than the effect of the modulation of refraction ω̃k.

2.2. Linear response of distribution of quasi-particles. Set the fluctuations
to be

ñ =
∑
q,Ω

nq,Ω exp(iq · x− iΩt), Ñ =
∑
q,Ω

Nq,Ω exp(iq · x− iΩt)

q, Ω stand for the slow spatiotemporal variation associated with ion-acoustic waves.
Then we can get response from equation 2.2,

Nq,Ω = − ωp0
Ω− q · vg

nq,Ω
2n0

q·∂〈N〉
∂k
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When the self-interaction of plasma waves is weaker than the decorrelation due
to the wave dispersion, i.e. τac < τtr, τc, we can use quasi-linear theory to calculate
the mean evolution of energy density,

(2.3)
d

dt
〈Ek〉 = −DN

∂〈N〉
∂k

DN =

(
ωp0
2n0

)2

<
∑
q,Ω

|nq,Ω|2
i

Ω− q · vg + iγN
vg · qq·

∂〈N〉
∂k

i

Ω− q · vg + iγN
→ πδ(Ω− q · vg)

which is consistent with previous result.
Relation to wave-wave interaction
From Golden rule we know that

Rate ∼ δ(ωk+q − ωk − ωq) ≈
i

ωk+q − ωk − ωq
In disparate scale interaction, we have q� k, then

i

ωk+q − ωk − ωq
∼=

i

ωk + q dωdk − ωk − ωq
=

i

qvg − ωq

The equation 2.3 describe the relation between action density (wave population
density) 〈N〉 and the energy transfer from plasma waves to ion-acoustic waves.
Since the group velocity of plasma waves is vg = ∂ωk

∂k = γT v
2
tek/ωk > 0, the

damping of plasma waves should satisfy the condition,

d

dt
〈Ek〉 < 0⇒ ∂〈N〉

∂k
> 0

i.e. the energy transfer from plasma wave quasi-particles to ion-acoustic waves
requires a population inversion, and the ion-acoustic waves grow in time at the
expense of plasma waves.

2.3. Growth of ion-acoustic waves. The influence of Langmuir waves on ion-
acoustic waves is due to electron pressure from fast oscillation by the plasma waves.
But the ion kinetic energy associated with this rapid oscillation is me/mi times
smaller than that of electrons. In slow varying scales, which is relevant to ion-
acoustic waves, the rapid electron oscillation induces an radiation pressure,

prad =
∂

∂ω
(ωε)|ωp0

|E|2

8π

where E is the electric field, ε is a dielectric function. prad is essentially plasma
wave energy density. The gradient of prad, i.e. ponderomotive force, induces a slow-
varying ion motion. In addition to thermal pressure pth = c2sñmi, the linearized
ion equation of motion is

min0
∂Ṽ

∂t
= − ∂

∂x
(pth + prad)

plus the continuity equation,
∂ñ

∂t
= −n0

∂Ṽ

∂x
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Wave kinetics Envelope
phonon N E envelope

Wave kinetic equation Zakharov equation
phase space real space

adiabatic N conserved envelope affected by IAWs
stochastic coherent

Table 1. Wave kinetics approach versus envelope formalism for
Langmuir turbulence.

eliminating Ṽ , we have dynamics equation for ion-acoustic waves

(2.4)
∂2

∂t2
ñ

n0
=

∂2

∂x2

(
c2s
ñ

n0
+
|E|2

8πn0mi

)

write |E|
2

8πn0
=
´
dkωkÑ and use linear response of action density,

Ñ = − qωp0
Ω− qvg

ñ

2n0

∂〈N〉
∂k

then we have
∂2

∂t2
ñ

n0
=

∂2

∂x2

(
c2s
ñ

n0
+

1

mi

ˆ
dkωk0

(
− qωp0

Ω− qvg
ñ

2n0

∂〈N〉
∂k

))
then the dispersion relation is

Ω2 = q2c2s + q2
ω2
p0

2mi

ˆ
dk

(
− q

Ω− qvg
∂〈N〉
∂k

)
= q2c2s + q2

ω2
p0

2mi

ˆ
dk

(
iπδ(Ω− qvg)

∂〈N〉
∂k

)
set Ω = qcs + iγN , γN � qcs, then one has,

Ω = qcs + iπq2
ω2
p0

4mics

ˆ
dkδ(Ω− qvg)

∂〈N〉
∂k

so the ion-acoustic wave is unstable if
∂〈N〉
∂k

> 0, at Ω ' qvg

We can compare the wave kinetics approach to envelope formalism using table 1

3. Wave kinetics for zonal flow generation

It is worthwhile to note that the zonal flow growth is quite similar to the problem
of Langmuir turbulence. In Langmuir turbulence, low frequency test phonons (i.e.
ion-acoustic waves) grow by attracting energy from ambient plasmons (i.e. plasma
waves). In this case, the zonal flow is the analogue of the ion-acoustic wave, while
the drift waves are the analogue of plasma waves, and the test zonal flow interacts
with a broad spectrum of drift wave fluctuations.

The essence of the theory for zonal flow growth is:
• Get mean field evolution equation of zonal flow, which relates ∂tφZF to
〈φ2
DW 〉, in the presence of wave pressures and stresses.
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• Then calculate the response of the drift wave spectrum to the test zonal
flow shear.

This procedure is similar to modulational stability calculations. The time scale
separation between low frequency zonal flow and high frequency drift waves enables
the utilize of wave kinetics to calculate the response of the drift wave spectrum to
the test zonal flow shear.

The zonal flow structure is essentially 2-dimensional. Thus in dimensionless
form, the zonal flow potential evolves according to 2D vorticity equation,

∂

∂t
∇2
rφZF = − ∂

∂r
〈ṽr∇2φ̃DW 〉 − γd∇2

rφZF

i.e. this equation relates the change of zonal flow vorticity to the drift wave vor-
ticity flux. Zonal flow evolution is then a process driven by vorticity transport, as
temperature and density evolution are driven by heat and particle fluxes.

Rewrite the drift wave vorticity flux 〈ṽr∇2φ̃DW 〉 = B∂r〈ṽrṽθ〉 in this equation,
noting ṽr = −∂θφ̃DW /B, one have,

(3.1)
∂

∂t
∇2
rφZF =

1

B
∇2
r

ˆ
d2kkrkθ

∣∣∣φ̃k∣∣∣2 − γd∇2
rφZF

equation 3.1 directly relates the evolution of zonal flow potential to the slow-varying
envelope of the drift wave intensity.

The drift wave energy density is

Ek = (1 + k2
⊥ρ

2
s) |φk|

2

the potential enstrophy is

Zk = (1 + k2
⊥ρ

2
s)

2 |φk|2

the drift wave dispersion relation is

ωk =
ω∗e

1 + k2
⊥ρ

2
s

thus the wave action density is

N =
Ek
ωk

= (1 + k2
⊥ρ

2
s)

2 |φk|
2

ω∗e

the ω∗e = kθV∗ here is constant, since kθ is unchanged by zonal flow shearing, i.e.
dky
dt = − ∂

∂y (kθVZF (x)) = 0. Thus we can relate wave action density to drift wave
fluctuation intensity, noting ∇2

rφZF = iqṼZF , the equation 3.1 becomes

(3.2) iq
∂

∂t
ṼZF =

1

B2

∂2

∂r2

ˆ
d2k

krkθ
(1 + k2

⊥ρ
2
s)

2
Ñ − γd(iqṼZF )

The modulational response Ñ now can be calculated using linearized WKE for
zonal flow shears,

∂Ñ

∂t
+ vg

∂Ñ

∂r
+ γkÑ =

∂

∂r
(kθṼZF )

∂〈N〉
∂kr

then the modulation Ñ induced by ṼZF is given by

Ñ = − qkθṼZF
Ω− qvg + iγk

∂〈N〉
∂kr
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put this back into zonal flow evolution equation, then the modulational instability
eigenfrequency is,

Ω =
q2

B2

ˆ
d2k

k2
θkr

Ω− qvg + iγk

1

(1 + k2
⊥ρ

2
s)

2

∂〈N〉
∂kr

− iγd

the imaginary part gives the zonal flow growth rate

(3.3) Γ = − q
2

B2

ˆ
d2k

γk
(Ω− qvg)2 + γ2

k

k2
θkr

(1 + k2
⊥ρ

2
s)

2

∂〈N〉
∂kr

− γd

The growth of zonal flow requires ∂〈N〉
∂kr

< 0, which is satisfied for any realistic
equilibrium spectrum of drift wave turbulence. In contrast to Langmuir turbulence,
there is no population inversion here for zonal flow growth. This is because for drift
waves are backward wave,

vg =
∂ωk
∂kr

=
∂

∂kr

kθV∗
1 + k2

⊥ρ
2
s

= − 2kθkr
(1 + k2

⊥ρ
2
s)

2
V∗ ⇒

vg
vp

< 0

while the plasma waves are forward wave, i.e. vg/vp > 0.
On the other hand,

d

dt
Ek = N

dωk
dt

while
dkr
dt

= − ∂

∂r
(kθVZF (x))

= −kθV
′

ZF

∂〈N〉
∂t

=
∂

∂kr

〈
kθṼ

′

ZF Ñ
〉

d〈Ek〉
dt

= ωk
∂

∂kr

〈
kθṼ

′

ZF Ñ
〉

(3.4)

= −
∑
q

ˆ
d2k

∂ωk
∂kr

q2k2
θ

Ω− qvg + iγk

∣∣∣ṼZF ∣∣∣2 ∂ 〈N〉
∂kr

=
2

B2

∑
q

ˆ
d2k

γk
(Ω− qvg)2 + γ2

k

q2k2
θkr

(1 + k2
⊥ρ

2
s)

2

∣∣∣ṼZF ∣∣∣2 ∂〈N〉
∂kr

(3.5)

since ∂ωk

∂kr
< 0, growth of zonal flow by depleting energy from drift waves also

requires ∂〈N〉
∂kr

< 0.
From Eq. 3.2 and 3.3, neglecting collisional damping, we have

d

dt

∣∣∣ṼZF ∣∣∣2 =
∑
q

2Γq

∣∣∣ṼZF ∣∣∣2
= − 2

B2

∑
q

ˆ
d2k

γk
(Ω− qvg)2 + γ2

k

q2k2
θkr

(1 + k2
⊥ρ

2
s)

2

∣∣∣ṼZF ∣∣∣2 ∂〈N〉
∂kr

It is thus apparently that

d

dt

(∣∣∣ṼZF ∣∣∣2 + 〈Ek〉
)

= 0
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Plasma waves and IAWs DWs and ZFs
High freq fluctuation plasma wave (plasmon) drift wave
Low freq structure ion-acoustic wave (phonon) zonal flow
Drive mechanism ponderomotive pressure Reynolds stress

wave action distribution plasmon number potential enstrophy
N =

(
1 + k2

⊥ρ
2
s

)2 |φk|2
Modulational instability population inversion needed population inversion unnecessary

Regulator ion Landau damping of phonon collisional damping for ZFs
Table 2. Langmuir turbulence case versus zonal flow generation case.

so the theory conserves the energy which gives rise to a predator-prey model. Then
drift wave turbulence energy is transferred into the energy of zonal flow via the
modulational instability.

Now we have introduced both plasma wave-sound wave interaction (i.e. plasmon-
phonon) and the drift wave-zonal flow interaction. The comparison is listed in table
2.

4. Nonlinear Schrodinger equation for Langmuir waves

4.1. Influence of ion-acoustic waves on plasma waves. A heuristic description
can be developed by applying the envelope formalism to plasmon-phonon interac-
tion. We can write inhomogeneous plasma waves as

Ẽ ∼ E(x, t)e0 exp(ik · x− iωt)

where the E(x, t) indicates the slow-varying envelope, the e0 denotes the polar-
ization of the wave field, the exp(ik · x − iωt) is the fast oscillating plasma wave
carrier. For plasma waves, the dispersion relation is

ω2 = ω2
pe + αk2v2

t,e

set ω = ωp0 + iγ (γ � ωp0), plug it back, then we have

ω2
p0 + 2iωp0γ = ω2

p0 + αv2
t.ek

2 + ω2
p0

ñ

n0

2iωp0γ = αv2
t.ek

2 + ω2
p0

ñ

n0

since γ → ∂t and k2 → −∇2, we get

(4.1) 2iωp0
∂

∂t
E = −αv2

t,e∇2E + ω2
p0

ñ

n0
E

together with equation 2.4 which we repost here,

(4.2)
∂2

∂t2
ñ

n0
= c2s∇2

(
ñ

n0
+

|E|2

8πn0mic2s

)
the set of equations 4.1 and 4.2 is knowns as Zakharov equations. They are coupled
envelope equation. In the absence of nonlinear coupling, i.e. if ñ → 0, Eq. 4.1
becomes the Schrodinger equation for a free particle, and if |E|2 → 0, Eq. 4.2
reduces to the ion-acoustic wave equation.
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When the evolution of the envelope is slow, ∂2

∂t2 �
c2s
L2 , the envelope modulation

propagates much slower than the ion-acoustic wave. This is subsonic (adiabatic)
limit. Then the ion inertial is negligible in 4.2, thus the ponderomotive force bal-
ances the gradient in thermal pressure,

ñ

n0
= − |E|2

8πn0c2s

plug it this back into Eq. 4.1, the coupled Zakharov equations reduces to one
nonlinear Schrodinger (NLS) equation, and is the adiabatic Zakharov equation,

2iωp0
∂

∂t
E = −αv2

t,e∇2E − ω2
p0

|E|2

8πn0c2s
E

The coefficient of the second term of RHS is negative which indicates an attrac-
tive potential and thus the collapse phenomenon. By introducing dimensionless
variables

ωp0t→ t, λ−1
Dex→ x,

E√
8πn0T0

→ E

the NLS equation is rescaled as

(4.3)
(
i
∂

∂t
+∇2

)
E + |E|2E = 0

which is a cubic Schrodinger equation.

4.2. Cubic Schrodinger equation. In last subsection, we get the cubic Schrodinger
equation as an approximation for the envelope of plasma waves affected by density
perturbation (i.e. ion-acoustic waves). Here we will discuss its general significance
for time-dependent dispersive waves. The general solution for a linear dispersive
mode is ˆ

dkF (k) exp (ikx− iω(k)t)

where the ω = ω(k) is the dispersion relation. For a modulated wavetrain with
most of energy at wavenumber k0, F (k) is concentrated at k0, then the mode can
be approximated by

Φ =

ˆ
dkF (k) exp

[
ikx− i

(
ω0 + (k − k0)ω′0 +

1

2
(k − k0)2ω′′0

)
t

]
where ω0 = ω(k0), ω′0 = ω′0k0) and ω′′0 = ω′′0 (k0). This can be rewrite as

Φ = ϕ exp (ik0x− iω0t)

where

ϕ =

ˆ
dκF (k0 + κ) exp

[
iκx− i

(
κω′0 +

1

2
κ2ω′′0

)
t

]
where k = k0 + κ used. The ϕ describes the modulations, i.e. envelope evolution,
it satisfies the equation

(4.4) i (∂tϕ+ ω′0∂xϕ) +
1

2
ω′′0∂xxϕ = 0

which corresponds to the dispersion relation

(4.5) W = κω′0 +
1

2
κ2ω′′0
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The equation for Φ is

i∂tΦ−
(
ω0 − k0ω

′
0 +

1

2
k2

0ω
′′
0

)
Φ + i (ω′0 − k0ω

′′
0 ) ∂xΦ− 1

2
ω′′0∂xxΦ = 0

corresponds to the original expansion (dispersion relation)

ω = ω0 + (k − k0)ω′0 +
1

2
(k − k0)2ω′′0

If the dispersion relation for ϕ is combined with a cubic nonlinearity correction,
we have

(4.6) i (∂tϕ+ ω′0∂xϕ) +
1

2
ω′′0∂xxϕ+ q |ϕ|2 ϕ = 0

ϕ = a exp (iκx− iWt) is still a solution, then Eq. 4.5 is modified to

(4.7) W = κω′0 +
1

2
κ2ω′′0 − qa2

By choosing a frame of reference moving with the linear group velocity ω
′

0, and
then rescaling the variables, Eq. 4.6 can be reduced to

i∂tE + ∂xxE + ν |E|2E = 0

it is the same form as adiabatic Zakharov equation derived in last subsection.
The one-dimensional NLS equation is known to be integrable, and the nonlinear

stationary solution is soliton. These are found by looking for solutions with moving
coordinate X = x− Ut, we set

E = v(X) exp (irx− ist)

substituting back into NLS equation, one obtains an ordinary differential equation
for v,

v′′ + i(2r − U)v′ + (s− r2)v + ν |v|2 v = 0

then we can choose

r =
U

2
, s =

U2

4
− α

and have the equation

v′′ − αv + νv3 = 0

which can be integrated once to

(v′)
2

= A+ αv2 − ν

2
v4

this can be solved in elliptic functions. We set A = 0 and ν, α > 0, then the solution
is

v =

√
2α

ν
sech

(√
α(x− Ut)

)
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4.3. Collapse of plasma waves with 3D spherical symmetry. The Zakharov
equation indicates the self-focusing of coherent plasma waves. Once the focusing
starts, the local wave intensity will be increased further which leads to a singularity.
The focusing also depends on the dimensionality of the system. For one-dimensional
space, the the nonlinear stationary solutions of NLS equation is soliton, as shown in
previous subsection. In a 3-dimensional system, focusing will continue and collapse
happens.

In the system with spherical symmetry, the adiabatic Zakhrov equation becomes

(4.8) i
∂

∂t
E +

1

r2

∂

∂r
r2 ∂

∂r
E + |E|2E = 0

Being analogue to quantummechanics, we can find out the integrals of this equation.
First is the total plasmon number. If we introduce the ’flux’, like the probability
current in QM,

F = i

(
E
∂

∂r
E? − E? ∂

∂r
E

)
Eq. 4.8 can be rewritten as

(4.9)
∂

∂t
|E|2 +

1

r2

∂

∂r

(
r2F

)
= 0

thus we find the total number of plasmon (i.e. total intensity of plasma waves) is
conserved,

I1 =

ˆ
drr2 |E|2

One the other hand, the total Hamiltonian is also conserved,

I2 =

ˆ
drr2

(∣∣∣∣∂E∂r
∣∣∣∣2 − 1

2
|E|4

)

the 1st term is kinetic energy and the 2nd potential energy. The potential is at-
tractive, which increases as the wave amplitude increases. So the I2 < 0 when wave
amplitude is larger enough.

We next study the evolution of the mean square of radius

〈
r2
〉

=

´
drr2r2 |E|2´
drr2 |E|2

=

´
drr4 |E|2

I1

Noting the conservation for wave intensity Eq. 4.9, we have the relation

∂

∂t

(
r2 |E|2

)
+ r2 1

r2

∂

∂r

(
r2F

)
= 0

∂

∂t

(
r2 |E|2

)
+

1

r2

∂

∂r

(
r4F

)
− 2rF = 0

∂2

∂t2

(
r2 |E|2

)
+

1

r2

∂

∂r

(
r4 ∂

∂t
F

)
− 2r

∂

∂t
F = 0
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averaging by 〈· · · 〉 =
´
drr2 (· · · ) then the mean square radius evolves as

I1
∂2

∂t2
〈
r2
〉

= 2

ˆ
drr3 ∂

∂t
F

= 2i

ˆ
drr3∂t(E∂rE

∗ − E∗∂rE)

= 2i

ˆ
drr3 (∂tE∂E

∗
r − ∂tE∗∂rE + E∂r∂tE

∗ − E∗∂r∂tE)

the RHS can be calculated by using NLS equation,

i
∂

∂t
E +

1

r2

∂

∂r
r2 ∂

∂r
E + |E|2E = 0

−i ∂
∂t
E∗ +

1

r2

∂

∂r
r2 ∂

∂r
E∗ + |E|2E∗ = 0

2i

ˆ
drr3∂tE∂rE

∗ = −2

ˆ
drr3

(
1

r2

∂

∂r
r2 ∂

∂r
E + |E|2E

)
∂E∗

∂r

= −2

ˆ
dr

[
r
∂E∗

∂r

∂

∂r

(
r2 ∂

∂r
E

)
+ r3 |E|2E∂E

∗

∂r

]
=

ˆ
dr

[
2
∂

∂r

(
r
∂E∗

∂r

)(
r2 ∂E

∂r

)
− 2r |E|2E∂E

∗

∂r

]
=

ˆ
dr

[
2r2

∣∣∣∣∂E∂r
∣∣∣∣2 + 2r3 ∂E

∂r

∂2E∗

∂r2
− 2r3 |E|2E∂E

∗

∂r

]

2i

ˆ
drr3∂tE

∗∂rE = 2

ˆ
drr3

(
1

r2

∂

∂r
r2 ∂

∂r
E∗ + |E|2E∗

)
∂E

∂r

= 2

ˆ
dr

[
r
∂E

∂r

∂

∂r

(
r2 ∂

∂r
E∗
)

+ r3 |E|2E∗ ∂E
∂r

]
=

ˆ
dr

[
−2

∂

∂r

(
r
∂E

∂r

)(
r2 ∂E

∗

∂r

)
+ 2r3 |E|2E∗ ∂E

∂r

]
=

ˆ
dr

[
−2r2

∣∣∣∣∂E∂r
∣∣∣∣2 − 2r3 ∂E

∗

∂r

∂2E

∂r2
+ 2r3 |E|2E∗ ∂E

∂r

]
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2i

ˆ
drr3E∂r∂tE

∗ = 2

ˆ
drr3E∂r

(
1

r2

∂

∂r
r2 ∂

∂r
E∗ + |E|2E∗

)
= −2

ˆ
dr

(
1

r2

∂

∂r
r2 ∂

∂r
E∗ + |E|2E∗

)
∂

∂r

(
r3E

)
= −6

ˆ
dr

(
E
∂

∂r

(
r2 ∂

∂r
E∗
)

+ r2 |E|4
)

−2

ˆ
dr

(
∂E

∂r
r
∂

∂r

(
r2 ∂

∂r
E∗
)

+ r3 |E|2E∗ ∂E
∂r

)
= −6

ˆ
dr

(
−r2

∣∣∣∣∂E∂r
∣∣∣∣2 + r2 |E|4

)

−2

ˆ
dr

(
− ∂

∂r

(
∂E

∂r
r

)(
r2 ∂E

∗

∂r

)
+ r3 |E|2E∗ ∂E

∂r

)
= −6

ˆ
dr

(
−r2

∣∣∣∣∂E∂r
∣∣∣∣2 + r2 |E|4

)

−2

ˆ
dr

(
−r2

∣∣∣∣∂E∂r
∣∣∣∣2 − r3 ∂E

∂r

∂2E∗

∂r2
+ r3 |E|2E∗ ∂E

∂r

)

=

ˆ
dr

(
8r2

∣∣∣∣∂E∂r
∣∣∣∣2 − 6r2 |E|4 + 2r3 ∂E

∂r

∂2E∗

∂r2
− 2r3 |E|2E∗ ∂E

∂r

)

2i

ˆ
drr3E∗∂r∂tE = −2

ˆ
drr3E∗∂r

(
1

r2

∂

∂r
r2 ∂

∂r
E + |E|2E

)
= 2

ˆ
dr

(
1

r2

∂

∂r

(
r2 ∂

∂r
E

)
+ |E|2E

)
∂

∂r

(
r3E∗

)
= 6

ˆ
dr

(
E∗

∂

∂r

(
r2 ∂

∂r
E

)
+ r2 |E|4

)
+2

ˆ
dr

(
∂E∗

∂r
r
∂

∂r

(
r2 ∂

∂r
E

)
+ r3 |E|2E∂E

∗

∂r

)
= 6

ˆ
dr

(
−r2

∣∣∣∣∂E∂r
∣∣∣∣2 + r2 |E|4

)

+2

ˆ
dr

(
−r2

∣∣∣∣∂E∂r
∣∣∣∣2 − 3r3 ∂E

∂r

∂2E∗

∂r2
+ r3 |E|2E∂E

∗

∂r

)

=

ˆ
dr

(
−8r2

∣∣∣∣∂E∂r
∣∣∣∣2 + 6r2 |E|4 − 2r3 ∂E

∗

∂r

∂2E

∂r2
+ 2r3 |E|2E∂E

∗

∂r

)
since

ˆ
drr3

(
∂E

∂r

∂2E∗

∂r2
+
∂E∗

∂r

∂2E

∂r2

)
=

ˆ
drr3 ∂

∂r

(∣∣∣∣∂E∂r
∣∣∣∣2
)

= −3

ˆ
drr2

∣∣∣∣∂E∂r
∣∣∣∣2
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ˆ
drr3 |E|2

(
E
∂E∗

∂r
+ E∗

∂E

∂r

)
=

ˆ
drr3 ∂

∂r
|E|2

= −3

ˆ
drr2 |E|2

we finally obtain the identity

∂2

∂t2
〈
r2
〉

=
1

I1

ˆ
drr2

[
8

∣∣∣∣∂E∂r
∣∣∣∣2 − 6 |E|4

]

= 8
I2
I1
− 2

I1

ˆ
drr2 |E|4

since the second term on RHS is positive, we have
∂2

∂t2
〈
r2
〉
< 8

I2
I1

which gives 〈
r2
〉

= 8
I2
I1
t2 +

∂

∂t

〈
r2
〉

0
t+
〈
r2
〉

0

The integral I1 is positive, so when I2 is negative, the mean square radius ap-
proaches zero in finite time, i.e. the singularity forms in finite time.

5. Summary

This note presents the theory of disparate scale interaction, in the context of
Langmuir turbulence, as well as the growth of zonal flow, using wave kinetic the-
ory. The envelope formalism for Langmuir turbulence (Zakharov equations) is also
presented. This problem is a fundamental paradigm for structure formation by the
simplification of local symmetry-breaking perturbations by wave radiation stresses.
The mechanism is often referred to ‘modulational instability’, since in the course of
it, local modulations in the wave population field are amplified and induce structure
formation. It also presents the theory on the collapse of 3D isotropic Langmuir tur-
bulence, that is the formation of density cavity (i.e. singularity) due to the evolution
of modulational instability in finite time.

The system of equations in Section 3 describes the interaction between the drift
wave and zonal flow. This is an example of a 2-component, self-regulating system
which leads to a predator-prey model. The drift wave turbulence grows by its own
instability mechanism, and its energy is transferred to zonal flow via modulational
instability process. So a correspondence is that

Drift wave fluctuation:

〈N〉 =
∑
k

Nk ←→ prey

Zonal flow energy: 〈
U2
〉

=
∑
q

|Uq|2 ←→ predator

where Nk =
(
1 + ρ2

sk
2
⊥
)2 |φk|2 and U ≡ d

drVZF .
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